PEM水电解制氢技术 – 超声波燃料电池喷涂设备 – 驰飞超声波喷涂

PEM水电解制氢技术

PEM水电解制氢技术 – 超声波燃料电池喷涂设备 – 驰飞超声波喷涂

PEM 水电解槽采用 PEM 传导质子,隔绝电极两侧的气体,避免 AWE 使用强碱性液体电解质所伴生的缺点。PEM 水电解槽以 PEM 为电解质,以纯水为反应物,加之 PEM 的氢气渗透率较低,产生的氢气纯度高,仅需脱除水蒸气;电解槽采用零间距结构,欧姆电阻较低,显著提高电解过程的整体效率,且体积更为紧凑;压力调控范围大,氢气输出压力可达数兆帕,适应快速变化的可再生能源电力输入。因此,PEM 电解水制氢是极具发展前景的绿色制氢技术路径。

也要注意到,PEM 水电解制氢的瓶颈环节在于成本和寿命。电解槽成本中,双极板约占 48%,膜电极约占 10%。当前 PEM 国际先进水平为:单电池性能为 2 A·cm–2@2 V ,总铂系催化剂载量为 2~3 mg/cm2 ,稳定运行时间为 6×104 ~8×104 h,制氢成本约为每千克氢气 3.7 美元。降低 PEM 电解槽成本的研究集中在以催化剂、PEM 为基础材料的膜电极,气体扩散层,双极板等核心组件。

1、电催化剂

由于 PEM 电解槽的阳极处于强酸性环境(pH≈2)、电解电压为 1.4~2.0 V,多数非贵金属会腐蚀并可能与 PEM 中的磺酸根离子结合,进而降低 PEM 传导质子的能力。PEM 电解槽的电催化剂研究主要是 Ir、Ru 等贵金属 / 氧化物及其二元、三元合金 / 混合氧化物,以钛材料为载体的负载型催化剂。

按照技术规划目标,膜电极上的铂族催化剂总负载量应降低到 0.125 mg/cm2 ,而当前的阳极铱催化剂载量在 1 mg/cm2 量级,阴极 Pt/C 催化剂的 Pt 载量约为 0.4~0.6 mg/cm2 。

Ru 的电催化析氧活性高于 Ir,但稳定性差;通过与 Ir 形成稳定合金可提高催化剂的活性与稳定性。

受限于 PEM 水电解制氢的酸性环境、阳极高电位、良好导电性等要求,非贵金属催化剂或非金属催化剂的研发难度较大,预计一定时期内实际用于大规模电解槽的催化剂仍以 Ir 为主。未来降低制氢成本、减少贵金属催化剂用量的更好方法是研发超低载量或有序化膜电极。

2 、隔膜材料

在 PEM 方面,目前常用的产品有杜邦公司 Nafion 系列膜、陶氏化学 Dow 系列膜、旭硝子株式会社 Flemion 系列膜、旭化成株式会社 Aciplex-S 系列膜、德山化学公司 Neosepta-F 等。

为进一步提高 PEM 性能并降低成本,一方面可采用增强复合的方案改善 PEM 的机械性能,有利于降低膜的厚度;另一方面,可通过提高成膜的离子传导率来降低膜阻和电解能耗,有利于提高电解槽的整体性能。

3 、膜电极

PEM 电解水的阳极需要耐酸性环境腐蚀、耐高电位腐蚀,应具有合适的孔洞结构以便气体和水通过。受限于 PEM 电解水的反应条件,PEM 燃料电池中常用的膜电极材料(如碳材料)无法用于水电解阳极。

改善集流器的性能也可提高电解槽性能。

4 、双极板

双极板及流场占电解槽成本的比重较大,降低双极板成本是控制电解槽成本的关键。在 PEM 电解槽阳极严苛的工作环境下,若双极板被腐蚀将会导致金属离子浸出,进而污染 PEM,因此常用的双极板保护措施是在表面制备一层防腐涂层。

5 、电解槽稳定性

许多研究团队着力探索 PEM 电解槽中各部件的衰减机理,发现催化剂和膜的脱落、水流量变化、供水管路腐蚀等会导致欧姆阻抗提高,膜电极结构被破坏后会诱发两侧气体渗透并造成氢气纯度降低,温度 / 压力变化、电流密度和功率负载循环也会影响部件衰减速率。

杭州驰飞的燃料电池催化剂涂层系统可产生高度均匀,可重复和耐用的涂层,特别适合这些挑战性应用。从研发到生产,我们的防堵塞技术可以更好地控制涂层属性,显著减少原材料用量,并减少维护和停机时间。

超声镀膜系统可在燃料电池和质子交换膜(PEM)电解器(如Nafion)的电解工艺上产生高度耐用、均匀的碳基催化剂墨水涂层,而膜不会变形。均匀的催化剂涂层沉积在PEM燃料电池、GDL、电极、各种电解质膜和固体氧化物燃料电池上,喷涂的悬浮液包含炭黑墨水、PTFE粘合剂、陶瓷浆料、铂和其他贵金属。也可以使用超声波喷涂其他金属合金,包括金属氧化物悬浮液的铂、镍、铱和钌基燃料电池催化剂涂层,以制造PEM燃料电池、聚合物电解质膜(PEM)电解槽、DMFC(直接甲醇燃料电池)和SOFC(固体氧化物燃料电池)可产生大负荷和高电池效率。

PEM水电解制氢技术 - 超声波燃料电池喷涂设备 - 驰飞超声波喷涂

英文网站:CHEERSONIC ULTRASONIC COATING SOLUTION